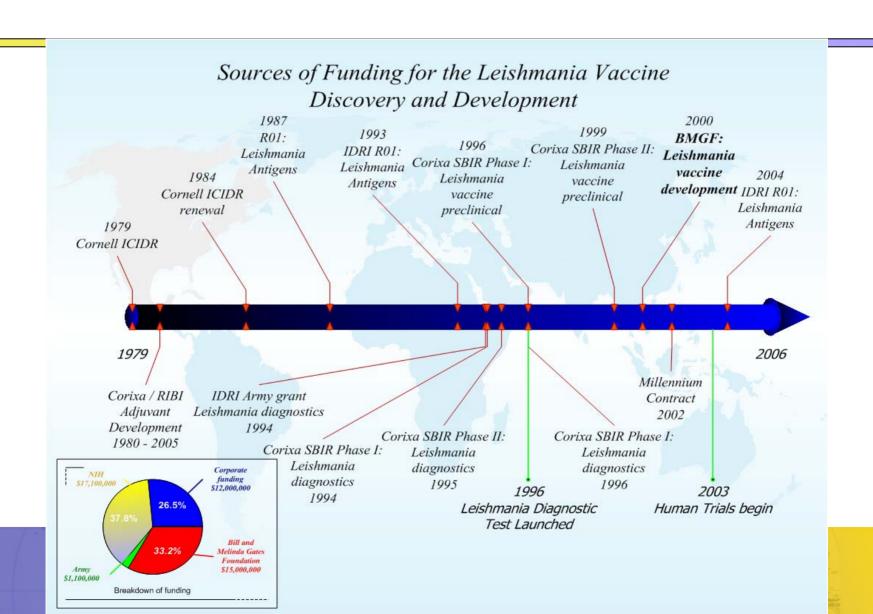
Leishmaniasis: Challenges for Vaccine Development

Steven G. Reed

Infectious Disease Research Institute

Seattle


IDRI Goals: Leishmaniasis

- To improve existing vaccines for use in therapy and prevention.
 - Antigen Discovery
 - Vaccine Development
 - Manufacturing Process
 - Clinical Testing
- To improve existing diagnostics for VL and PKDL and develop a test(s) to demonstrate cure

Challenges to Leishmania Vaccine Development

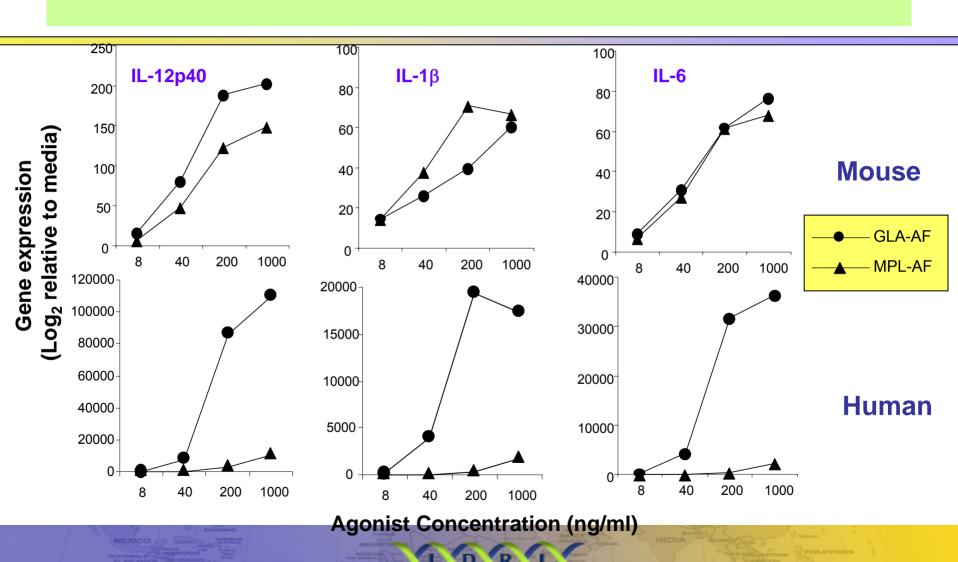
- PROBLEM: How to finance?
 - Making a vaccine requires industry—type effort, <u>But</u>
 - Activity generally carried out in academic organizations
 - Solution requires creative leveraging of public/private funds
- IDRI Solution: Create PPP, including "Non-Profit Biotech" collaborating with industry

Funding Development of a Leishmaniasis Vaccine

Challenges to Leishmania Vaccine Development

Problem: How to Access Adjuvant?

- Academic adjuvants not practical (IL12, P. acnes- IFN)
- Most new clinical adjuvants are in hands of industry
- Available clinical adjuvants promote too much Th2 (alum, AS02)
- Mouse data misleading (i.e. CpG)


IDRI Solution:

- License MPL
- Optimize MPL formulation
- Develop synthetic MPL substitute to lower COG

Next Generation of TLR-4 Agonists

Gluco-pyranosylphospho-Lipid A Molecules; Enhance Potency Over MPL

DC: 4h in vitro activation

Infectious Disease Research Institute

IN DONES A M

Human PBMC IL-1β

MPL

Sample	Wells	Values	R	Result	MeanResult	Std.Dev.	CV%	Dilution	Adj.Result
01	A5	0.616	ī	0.955	1.012	0.080	7.9	10.0	10.123
	A6	0.716	-	1.069					
02	B5	0.387		0.698	0.696	0.002	0.2	50.0	34.817
1	B6	0.385		0.695					
03	C5	0.004	R	0.266	0.271	0.007	2.6	250.0	67.747
	C6	0.013		0.276					
04	D5	0.003	R	0.265	0.264	0.001	0.5	1250.0	329.714
1	D6	0.001	R	0.263					
05	E5	0.004	R	0.266	0.267	0.002	0.7	6250.0	1669.709
	E6	0.006	R	0.269					
06	F5	-0.002	R	0.259	0.260	0.001	0.6	31250.0	8119.517
	F6	-0.000	R	0.261					
07	G5	-0.004	R	0.257	0.258	0.000	0.2	156250.0	40236.425
	G6	-0.003	R	0.258					

R - Outside standard range Mean Adjusted Result: 7209.72

GLA

Sample	Wells	Values	R	Result	MeanResult	Std.Dev.	CV%	Dilution	Adj.Result
01	A7	3.335	R	4.022	3.994	0.040	1.0	10.0	39.936
1	A8	3.285	R	3.966					
02	B7	3.247	R	3.922	3.906	0.024	0.6	50.0	195.276
	B8	3.217	R	3.889					
03	C7	3.192	R	3.861	3.856	0.006	0.2	250.0	964.106
	C8	3.185	R	3.852					
04	D7	1.459		1.906	1.962	0.079	4.0	1250.0	2453.067
	D8	1.558	_	2.019					
05	E7	0.650	╛	0.995	1.015	0.029	2.8	6250.0	6342.622
	E8	0.686		1.035					
06	F7	0.178		0.462	0.462	0.001	0.2	31250.0	14431.931
	F8	0.177		0.461					
07	G7	0.005	R	0.266	0.272	0.007	2.8	156250.0	42465.061
	G8	0.014		0.277					

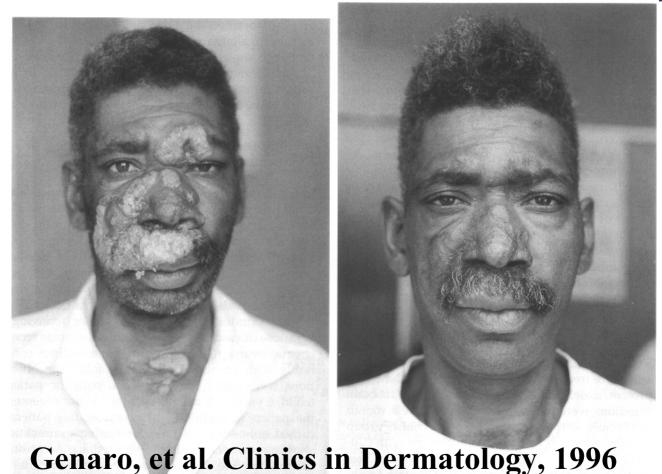
R - Outside standard range Mean Adjusted Result: 9556.00

92.3 nanomolar GLA is equivalent in potency to 57 micromolar MPL

INDONESIA

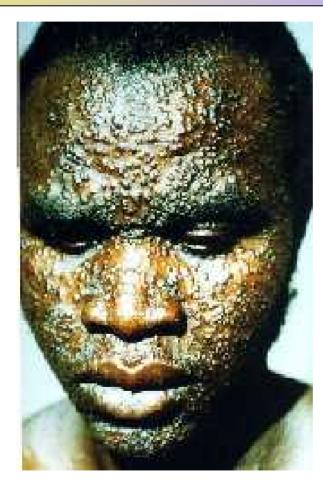
Challenges to Leishmania Vaccine Development

Problem: How to demonstrate POC


Solution:

- Perform clinical trials in multiple indications
- Prophylactic/Therapeutic approaches

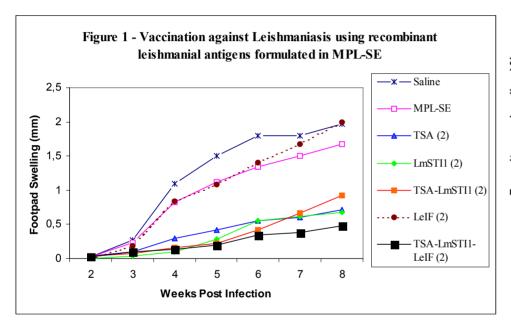
Leishmaniasis: Rationale for a Therapeutic Vaccine


- Animal Models
 - L. major in mice
 - L. infantum in dogs
- Success of immuno-chemotherapy VL trials in Brazil, India
- Clinical experience with ML/CL in Brazil and Venezuela
- PKDL studies in Sudan

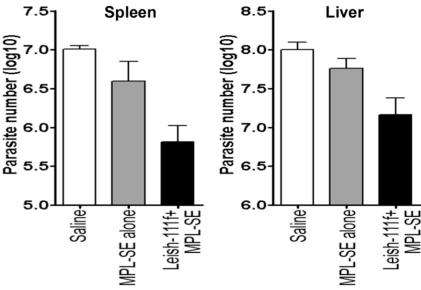
Immunotherapy for Leishmaniasis

b

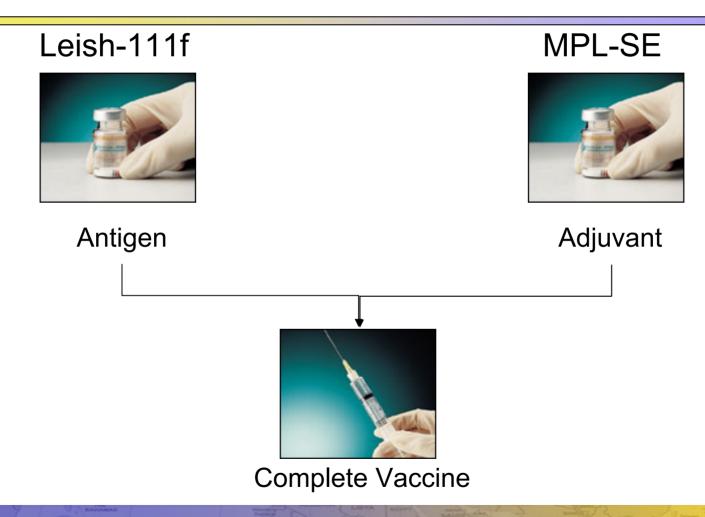
PKDL in Sudan



Leish-111f + MPL-SE Clinical Development


Leish-111f: Recombinant Antigen Comprised of 3 Linked Subunits

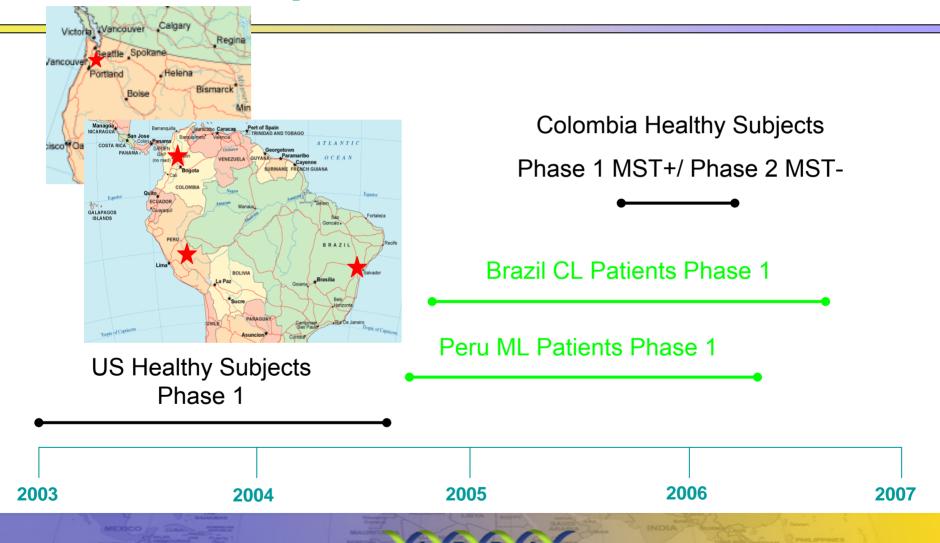
Leish-111f (TSA-LmSTI1-LeIF)


BALB/c - L. major

C57BL/6 - *L. infantum*

DONESIA

Leish-111f + MPL-SE Vaccine

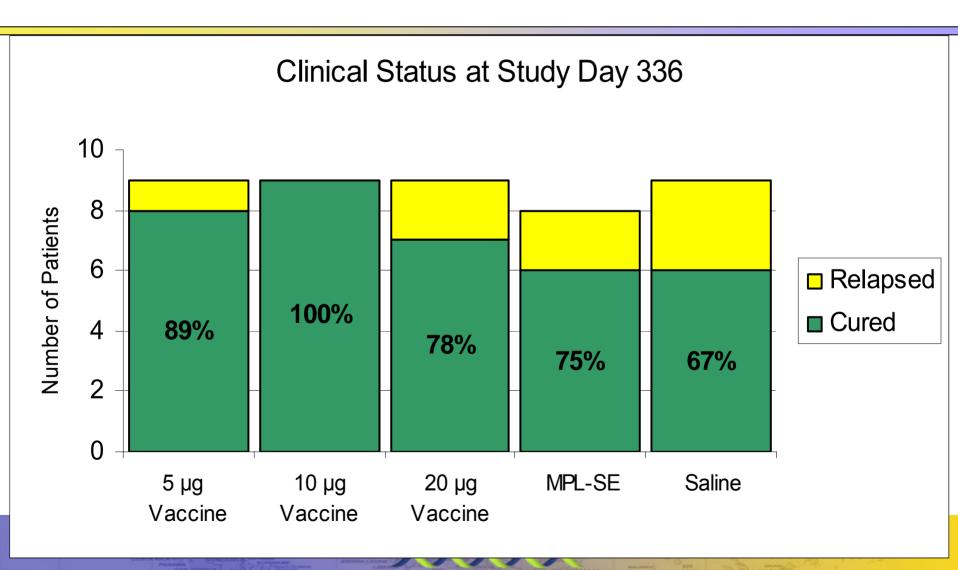

Leish-111f + MPL-SE Vaccine Therapeutic Indications (In Progress)

- Combine vaccine with chemotherapy for treating:
 - -VL
 - PKDL
 - CL
 - ML

Leish-111f + MPL-SE Vaccine Prophylactic Indications (Planned)

- Cutaneous leishmaniasis
- Visceral leishmaniasis (prevent VL, prevent PKDL)

Completed Clinical Trials



Infectious Disease Research Institute

Brazil/Peru Trial - Design

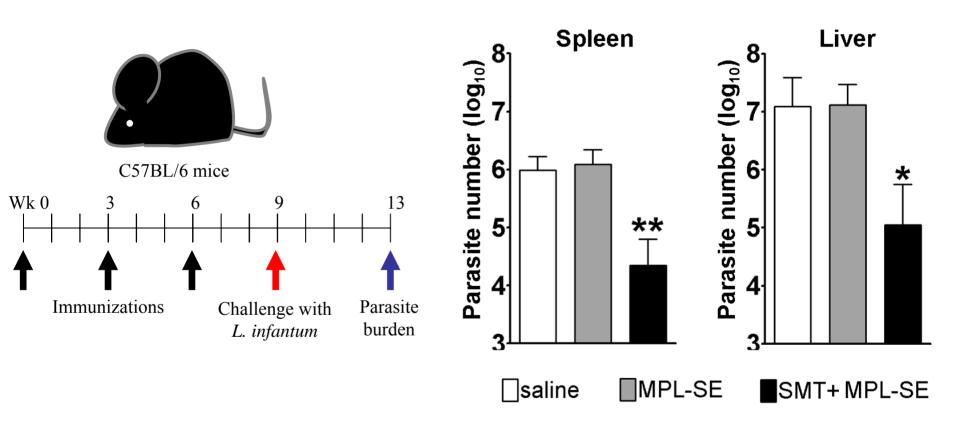
	Brazil Phase 1	Peru Phase 1		
Population	CL	ML		
Vaccine Dose (n) Leish -111f + 25 μg MPL-SE	5 μg (9) 10 μg (9) 20 μg (9)	5 μg (12) 10 μg (12) 20 μg (12)		
Control (n)	MPL-SE <i>(8)</i> Saline <i>(9)</i>	Saline (12)		
Chemotherapy	Antimonial	Antimonial		
Endpoints	Safety and Tolerability Immunogenicity Clinical Evolution			

Brazil CL Therapeutic Trial Results

NONES A

Summary

The Leish-111f + MPL-SE vaccine:


- Safe and well tolerated
- Immunogenic
- Does not exacerbate disease when given with chemotherapy to CL and ML patients

Vaccine Development; Sub-unit vaccines

- Selective:
 - Use only relevant antigens
 - Use adjuvants with desired qualities
- Versatile: Antigens can be used alone, in combination, as fusions
- Manufacturing options greatly increased

Next Generation Vaccine: SMT plus MPL-SE

Sterol 24-c-methyltransferase (SMT): A Potent Leishmaniasis Vaccine Candidate

SMT is involved in the biosynthesis of ergosterol; target of amphotericin B

Leishmania SMT is highly conserved among species (>96%), and is homologous to those of *Trypanosoma* (66%) and *Candida* (39%), but no homologous protein found in humans.

Challenges to Leishmania Vaccine Development

PROBLEM: Who will manufacture the vaccine?

Solution:

- Reduce risk for Pharma (keep cost low, finalize POC studies, define market potential
- Leverage canine market

Challenges to Leishmania Vaccine Development

PROBLEM: Sustainability

Solution:

- Incentives for Pharma
- Exclusive vs. Non-Exclusive (include diligence requirements)
- Multiple Indications
- Vaccine registration in Europe, U.S., etc.

Summary: The Ideal Leishmania Vaccine

- Safe
- Induces effective T cell response against appropriate antigens
- Induces long-term immunity
- Prophylactic and therapeutic activity
- Effective against more than one form of leishmaniasis
- Cost-effective
- Reproducible, transferable manufacturing process

Leishmaniasis Vaccine Development:Future Directions

- Finalize Antigen Selection
- BUT Antigen ≠Vaccine
- MPL-SE is Effective, but, COG is an Issue
- Animal Studies, Mice, Hamsters, Dogs (combine with rabies)
- Obtain POC in Clinic

Special Thanks To:

- Yasu Goto
- Rhea Coler
- Ajay Bhatia
- Jeff Guderian
- Sylvie Bertholet
- Franco Piazza
- Alejandro Llanos
- Hashim Ghalib
- Shyam Sundar

- NIAID
- Bill and Melinda Gates Foundation